Pandas中用SQL来查询数据
Pandas
和SQL
之间的联用,我们其实也可以在Pandas
当中使用SQL
语句来筛选数据,通过Pandasql
模块来实现该想法
pip install pandasql
要是你目前正在使用jupyter notebook
,也可以这么来下载
!pip install pandasql
导入数据
我们首先导入数据
import pandas as pd
from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()
数据集做一个初步的探索性分析,
df.info()
output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9999 entries, 0 to 9998
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 OrderID 9999 non-null int64
1 Quantity 9999 non-null int64
2 UnitPrice(USD) 9999 non-null int64
3 Status 9999 non-null object
4 OrderDate 9999 non-null object
5 Product_Category 9963 non-null object
6 Sales_Manager 9999 non-null object
7 Shipping_Cost(USD) 9999 non-null int64
8 Delivery_Time(Days) 9948 non-null float64
9 Shipping_Address 9999 non-null object
10 Product_Code 9999 non-null object
11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
数据集的列名做一个转换,代码如下
df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD",
"UnitPrice(USD)":"UnitPrice_USD",
"Delivery_Time(Days)":"Delivery_Time_Days"},
inplace=True)
df.info()
output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9999 entries, 0 to 9998
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 OrderID 9999 non-null int64
1 Quantity 9999 non-null int64
2 UnitPrice_USD 9999 non-null int64
3 Status 9999 non-null object
4 OrderDate 9999 non-null object
5 Product_Category 9963 non-null object
6 Sales_Manager 9999 non-null object
7 ShippingCost_USD 9999 non-null int64
8 Delivery_Time_Days 9948 non-null float64
9 Shipping_Address 9999 non-null object
10 Product_Code 9999 non-null object
11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
用SQL
筛选出若干列来
我们先尝试筛选出OrderID
、Quantity
、Sales_Manager
、Status
等若干列数据,用SQL
语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager, \
Status, Shipping_Address, ShippingCost_USD \
FROM df
与Pandas
模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,\
Status, Shipping_Address, ShippingCost_USD \
FROM df"
df_orders = sqldf(query)
df_orders.head()
SQL
中带WHERE
条件筛选
我们在SQL
语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT * \
FROM df_orders \
WHERE Shipping_Address = 'Kenya'"
df_kenya = sqldf(query)
df_kenya.head()
而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * \
FROM df_orders \
WHERE Shipping_Address = 'Kenya' \
AND Quantity < 40 \
AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head()
分组
同理我们可以调用SQL
当中的GROUP BY
来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, \
COUNT(OrderID) AS Orders \
FROM df_orders \
GROUP BY Shipping_Address"
df_group = sqldf(query)
df_group.head(10)
排序
而排序在SQL
当中则是用ORDER BY
,代码如下
query = "SELECT Shipping_Address, \
COUNT(OrderID) AS Orders \
FROM df_orders \
GROUP BY Shipping_Address \
ORDER BY Orders"
df_group = sqldf(query)
df_group.head(10)
数据合并
我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID,\
Quantity, \
Product_Code, \
Product_Category, \
UnitPrice_USD \
FROM df"
df_products = sqldf(query)
df_products.head()
两个数据集之间的交集,因此是INNER JOIN
,代码如下
query = "SELECT T1.OrderID, \
T1.Shipping_Address, \
T2.Product_Category \
FROM df_orders T1\
INNER JOIN df_products T2\
ON T1.OrderID = T2.OrderID"
df_combined = sqldf(query)
df_combined.head()
与LIMIT
之间的联用
在SQL
当中的LIMIT
是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, \
Status, Shipping_Address, \
ShippingCost_USD FROM df LIMIT 10"
df_orders_limit = sqldf(query)
df_orders_limit
Pandas
与SQL
语法不同
基础语法
在SQL
当中,我们用SELECT
来查找数据,WHERE
来过滤数据,DISTINCT
来去重,LIMIT
来限制输出结果的数量,
输出数据集
## SQL
select * from airports
## Pandas
airports
输出数据集的前三行数据,代码如下
## SQL
select * from airports limit 3
## Pandas
airports.head(3)
对数据集进行过滤筛查
## SQL
select id from airports where ident = 'KLAX'
## Pandas
airports[airports.ident == 'KLAX'].id
对于筛选出来的数据进行去重
## SQL
select distinct type from airport
## Pandas
airports.type.unique()
多个条件交集来筛选数据
多个条件的交集来筛选数据,代码如下
## SQL
select * from airports
where iso_region = 'US-CA' and
type = 'seaplane_base'
## Pandas
airports[(airports.iso_region == 'US-CA') &
(airports.type == 'seaplane_base')]
或者是
## SQL
select ident, name, municipality from airports
where iso_region = 'US-CA' and
type = 'large_airport'
## Pandas
airports[(airports.iso_region == 'US-CA') &
(airports.type == 'large_airport')][['ident', 'name', 'municipality']]
排序
在Pandas
当中默认是对数据进行升序排序,要是我们希望对数据进行降序排序,需要设定ascending
参数
## SQL*
select * from airport_freq
where airport_ident = 'KLAX'
order by type desc
*## Pandas*
airport_freq[airport_freq.airport_ident == 'KLAX']
.sort_values('type', ascending=False)
筛选出列表当中的数据
要是我们需要筛选出来的数据在一个列表当中,这里就需要用到isin()
方法,代码如下
## SQL
select * from airports
where type in ('heliport', 'balloonport')
## Pandas
airports[airports.type.isin(['heliport', 'balloonport'])]
## SQL
select * from airports
where type not in ('heliport', 'balloonport')
## Pandas
airports[~airports.type.isin(['heliport', 'balloonport'])]
删除数据
在Pandas
当中删除数据用的是drop()
方法,代码如下
## SQL
delete from dataframe where type = 'MISC'
## Pandas
df.drop(df[df.type == 'MISC'].index)
更新数据
在SQL
当中更新数据使用的是update
和set
方法,代码如下
### SQL
update airports set home_link = 'aaa'
where ident == 'KLAX'
### Pandas
airports.loc[airports['ident'] == 'KLAX', 'home_link'] = 'aaa'
调用统计函数
对于给定的数据集,如下图所示
runways.head()
我们调用min()
、max()
、mean()
以及median()
函数作用于length_ft
这一列上面,代码如下
## SQL
select max(length_ft), min(length_ft),
avg(length_ft), median(length_ft) from runways
## Pandas
runways.agg({'length_ft': ['min', 'max', 'mean', 'median']})
合并两表格
在Pandas
当中合并表格用的是pd.concat()
方法,在SQL
当中则是UNION ALL
,代码如下
## SQL
select name, municipality from airports
where ident = 'KLAX'
union all
select name, municipality from airports
where ident = 'KLGB'
## Pandas
pd.concat([airports[airports.ident == 'KLAX'][['name', 'municipality']],
airports[airports.ident == 'KLGB'][['name', 'municipality']]])
分组
顾名思义也就是groupby()
方法,代码如下
## SQL
select iso_country, type, count(*) from airports
group by iso_country, type
order by iso_country, type
## Pandas
airports.groupby(['iso_country', 'type']).size()
分组之后再做筛选
在Pandas
当中是在进行了groupby()
之后调用filter()
方法,而在SQL
当中则是调用HAVING
方法,代码如下
## SQL
select type, count(*) from airports
where iso_country = 'US'
group by type
having count(*) > 1000
order by count(*) desc
## Pandas
airports[airports.iso_country == 'US']
.groupby('type')
.filter(lambda g: len(g) > 1000)
.groupby('type')
.size()
.sort_values(ascending=False)
TOP N records
## SQL
select 列名 from 表名
order by size
desc limit 10
## Pandas
表名.nlargest(10, columns='列名')
数据分析神器:Polars
Polars
,它在数据处理的速度上更快,当然里面还包括两种API,一种是Eager API
,另一种则是Lazy API
,其中Eager API
和Pandas
的使用类似,语法类似差不太多,立即执行就能产生结果
而Lazy API
和Spark
很相似,会有并行以及对查询逻辑优化的操作
模块的安装与导入
我们先来进行模块的安装,使用pip
命令
pip install polars
在安装成功之后,我们分别用Pandas
和Polars
来读取数据,看一下各自性能上的差异,我们导入会要用到的模块
import pandas as pd
import polars as pl
import matplotlib.pyplot as plt
%matplotlib inline
使用%matplotlib命令可以将matplotlib的图表直接嵌入到Notebook之中,或者使用指定的界面库显示图表,它有一个参数指定matplotlib图表的显示方式。inline表示将图表嵌入到Notebook中。
Python提供了许多魔法命令,使得在IPython环境中的操作更加得心应手。魔法命令都以%或者%%开头,以%开头的成为行命令,%%开头的称为单元命令。行命令只对命令所在的行有效,而单元命令则必须出现在单元的第一行,对整个单元的代码进行处理
%matplotlib inline 可以在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt.show()这一步。
用Pandas
读取文件
本次使用的数据集是某网站注册用户的用户名数据,总共有360MB大小,我们先用Pandas
模块来读取该csv
文件
%%time
df = pd.read_csv("users.csv")
df.head()
可以看到用Pandas
读取CSV
文件总共花费了12秒的时间,数据集总共有两列,一列是用户名称,以及用户名称重复的次数“n”,我们来对数据集进行排序,调用的是sort_values()
方法,代码如下
%%time
df.sort_values("n", ascending=False).head()
用Polars
来读取操作文件
下面我们用Polars
模块来读取并操作文件,看看所需要的多久的时间,代码如下
%%time
data = pl.read_csv("users.csv")
data.head()
可以看到用polars
模块来读取数据仅仅只花费了730毫秒的时间,可以说是快了不少的,我们根据“n”这一列来对数据集进行排序,代码如下
%%time
data.sort(by="n", reverse=True).head()
对数据集进行排序所消耗的时间为1.39秒,接下来我们用polars模块来对数据集进行一个初步的探索性分析,数据集总共有哪些列、列名都有哪些,我们还是以熟知“泰坦尼克号”数据集为例
df_titanic = pd.read_csv("titanic.csv")
df_titanic.columns
output
['PassengerId',
'Survived',
'Pclass',
'Name',
'Sex',
'Age',
......]
和Pandas
一样输出列名调用的是columns
方法,然后我们来看一下数据集总共是有几行几列的,
df_titanic.shape
output
(891, 12)
看一下数据集中每一列的数据类型
df_titanic.dtypes
output
[polars.datatypes.Int64,
polars.datatypes.Int64,
polars.datatypes.Int64,
polars.datatypes.Utf8,
polars.datatypes.Utf8,
polars.datatypes.Float64,
......]
填充空值与数据的统计分析
我们来看一下数据集当中空值的分布情况,调用null_count()
方法
df_titanic.null_count()
相当于pandas的df.isnull().sum()
我们可以看到“Age”以及“Cabin”两列存在着空值,我们可以尝试用平均值来进行填充,代码如下
df_titanic["Age"] = df_titanic["Age"].fill_nan(df_titanic["Age"].mean())
计算某一列的平均值只需要调用mean()
方法即可,那么中位数、最大/最小值的计算也是同样的道理,代码如下
print(f'Median Age: {df_titanic["Age"].median()}')
print(f'Average Age: {df_titanic["Age"].mean()}')
print(f'Maximum Age: {df_titanic["Age"].max()}')
print(f'Minimum Age: {df_titanic["Age"].min()}')
output
Median Age: 29.69911764705882
Average Age: 29.699117647058817
Maximum Age: 80.0
Minimum Age: 0.42
数据的筛选与可视化
我们筛选出年龄大于40岁的乘客有哪些,代码如下
df_titanic[df_titanic["Age"] > 40]
绘制一张箱形图表,代码如下
fig, ax = plt.subplots(figsize=(10, 5))
ax.boxplot(df_titanic["Age"])
plt.xticks(rotation=90)
plt.xlabel('Age Column')
plt.ylabel('Age')
plt.show()
参考链接:polars官网