动态规划计算


什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

斐波那契数

力扣题目链接(opens new window)

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

  • 输入:4
  • 输出:3
  • 解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30
class Solution {
    public int fib(int n) {
        if (n < 2) return n;
        int a = 0, b = 1, c = 0;
        for (int i = 1; i < n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }
}
//非压缩状态的版本
class Solution {
    public int fib(int n) {
        if (n <= 1) return n;             
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for (int index = 2; index <= n; index++){
            dp[index] = dp[index - 1] + dp[index - 2];
        }
        return dp[n];
    }
}

爬楼梯

力扣题目链接(opens new window)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶
  1. 确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

  1. 确定递推公式

如果可以推出dp[i]呢?

从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和

当n为5的时候,dp table(dp数组)应该是这样的

70.爬楼梯

class Solution {
    public int climbStairs(int n) {
        if(n<=1){return n;}
        int[] dp=new int[n+1];
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
}
// 用变量记录代替数组
class Solution {
    public int climbStairs(int n) {
        if(n <= 2) return n;
        int a = 1, b = 2, sum = 0;
        
        for(int i = 3; i <= n; i++){
            sum = a + b;  // f(i - 1) + f(i - 2)
            a = b;        // 记录f(i - 1),即下一轮的f(i - 2)
            b = sum;      // 记录f(i),即下一轮的f(i - 1)
        }
        return b;
    }
}

使用最小花费爬楼梯

力扣题目链接(opens new window)

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20] 输出:15 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。 示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出:6 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:

  • cost 的长度范围是 [2, 1000]。
  • cost[i] 将会是一个整型数据,范围为 [0, 999]

确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

**dp[i]的定义:到达第i个台阶所花费的最少体力为dp[i]**。(注意这里认为是第一步一定是要花费)

确定递推公式

**可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]**。

那么究竟是选dp[i-1]还是dp[i-2]呢?

一定是选最小的,所以dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];

注意这里为什么是加cost[i],而不是cost[i-1],cost[i-2]之类的,因为题目中说了:每当你爬上一个阶梯你都要花费对应的体力值

确定遍历顺序

因为是模拟台阶,而且dp[i]又dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了

746.使用最小花费爬楼梯

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len=cost.length;
        int[] dp=new int[len];
        dp[0]=cost[0];
        dp[1]=cost[1];
        for(int i=2;i<len;i++){
            dp[i]=Math.min(dp[i-1],dp[i-2])+cost[i];

        }
        return Math.min(dp[len-1],dp[len-2]);
    }
}

不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

img

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

1
2

  1. 确定遍历顺序

这里要看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp=new int[m][n];
        for(int i=0;i<m;i++){
            dp[i][0]=1;
        }
        for(int i=0;i<n;i++){
            dp[0][i]=1;
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

img

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

img

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
  • 输出:2 解释:
  • 3x3 网格的正中间有一个障碍物。
  • 从左上角到右下角一共有 2 条不同的路径:
    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

img

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)

63.不同路径II

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];

        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }
}
class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        row=len(obstacleGrid)
        col=len(obstacleGrid[0])
        if obstacleGrid[0][0]==1 or obstacleGrid[row-1][col-1]==1:
            return 0
        dp=[[0 for _ in range(col)] for _ in range(row)]

        for i in range(row) :
            if obstacleGrid[i][0]==0:
                dp[i][0]=1
        for j in range(col) :
            if obstacleGrid[0][j]==0:
                dp[0][j]=1
        for i in range(1,row):
            for j in range(1,col):
                if obstacleGrid[i][j]==0:
                    dp[i][j]=dp[i-1][j]-dp[i][j-1]
                else:
                    dp[i][j]=0
        return dp[row-1][col-1]

整数拆分

力扣题目链接(opens new window)

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

  • 输入: 2
  • 输出: 1
  • 解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

  • 输入: 10
  • 输出: 36
  • 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
  • 说明: 你可以假设 n 不小于 2 且不大于 58

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

  1. 确定递推公式

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

  1. dp的初始化

只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

343.整数拆分

class Solution {
    public int integerBreak(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[]dp=new int[n+1];
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<=i-j;j++){
                // 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
                dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
                // j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }
}
class Solution(object):
    def integerBreak(self, n):
        """
        :type n: int
        :rtype: int
        """
        dp=[0]*(n+1);
        dp[2]=1;
        for i in range(3,n+1):
            for j in range(1,i-1):
                dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]))
        return dp[n]

不同的二叉搜索树

力扣题目链接(opens new window)

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:

img

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

96.不同的二叉搜索树2

  1. 确定dp数组(dp table)以及下标的含义

**dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]**。

  1. 确定递推公式

在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历

  1. 举例推导dp数组

n为5时候的dp数组状态如图:

96.不同的二叉搜索树3

class Solution {
    public int numTrees(int n) {
        //初始化 dp 数组
        int[] dp = new int[n + 1];
        //初始化0个节点和1个节点的情况
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                //对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
                //一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
}
class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n + 1)
        dp[0], dp[1] = 1, 1
        for i in range(2, n + 1):
            for j in range(1, i + 1):
                dp[i] += dp[j - 1] * dp[i - j]
        return dp[-1]

01背包问题

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是$o(2^n)$,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

动态规划-背包问题1

  1. 确定递推公式

有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j -weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  1. dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

但只不过一开始就统一把dp数组统一初始为0,更方便一些

动态规划-背包问题10

  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

    public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagsize = 4;
        testweightbagproblem(weight, value, bagsize);
    }

    public static void testweightbagproblem(int[] weight, int[] value, int bagsize){
        int wlen = weight.length, value0 = 0;
        //定义dp数组:dp[i][j]表示背包容量为j时,前i个物品能获得的最大价值
        int[][] dp = new int[wlen + 1][bagsize + 1];
        //初始化:背包容量为0时,能获得的价值都为0
        for (int i = 0; i <= wlen; i++){
            dp[i][0] = value0;
        }
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 1; i <= wlen; i++){
            for (int j = 1; j <= bagsize; j++){
                if (j < weight[i - 1]){
                    dp[i][j] = dp[i - 1][j];
                }else{
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
                }
            }
        }
        //打印dp数组
        for (int i = 0; i <= wlen; i++){
            for (int j = 0; j <= bagsize; j++){
                System.out.print(dp[i][j] + " ");
            }
            System.out.print("\n");
        }
    }
def bagproblem(bag_size,weight,value)->int:
    row=len(weight)+1
    col=bag_size+1
    dp=[[0 for _ in range(col)] for _ in range(row)]
    for j in range(weight[0],col):
        dp[0][j]=bag_size
    for i in range(1,row):
        for j in range(1,col):
            if j<weight[i-1]:
                dp[i][j]=dp[i-1][j]
            else:
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1])
    for i in range(row):
        print(dp[i])
       
if __name__=="__main__":
    bag_size = 4
    weight = [1, 3, 4]
    value = [15, 20, 30]
    bagproblem(bag_size,weight,value)

一维dp数组(滚动数组)

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

动规五部曲分析如下:

  1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

  1. 一维dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

  1. 一维dp数组遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次

为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

  1. 举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

动态规划-背包问题9

public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }
    }
def test_1_wei_bag_problem():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    bag_weight = 4
    # 初始化: 全为0
    dp = [0] * (bag_weight + 1)

    # 先遍历物品, 再遍历背包容量
    for i in range(len(weight)):
        for j in range(bag_weight, weight[i] - 1, -1):
            # 递归公式
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

    print(dp)

test_1_wei_bag_problem()

分割等和子集

力扣题目链接(opens new window)

题目难易:中等

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1: 输入: [1, 5, 11, 5] 输出: true 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2: 输入: [1, 2, 3, 5] 输出: false 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值可以最大为dp[j]。

**套到本题,dp[j]表示 背包总容量是j,最大可以凑成j的子集总和为dp[j]**。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

416.分割等和子集2

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。


文章作者: 读序
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 读序 !
  目录