什么是贪心
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
贪心没有套路,说白了就是常识性推导加上举反例。
分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2,3], s = [1,1]
- 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
示例 2:
- 输入: g = [1,2], s = [1,2,3]
- 输出: 2
- 解释:你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.
提示:
- 1 <= g.length <= 3 * 10^4
- 0 <= s.length <= 3 * 10^4
- 1 <= g[i], s[j] <= 2^31 - 1
大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
class Solution {
// 思路2:优先考虑胃口,先喂饱大胃口
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int count = 0;
int start = s.length - 1;
// 遍历胃口
for (int index = g.length - 1; index >= 0; index--) {
if(start >= 0 && g[index] <= s[start]) {
start--;
count++;
}
}
return count;
}
}
摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
- 输入: [1,7,4,9,2,5]
- 输出: 6
- 解释: 整个序列均为摆动序列。
示例 2:
- 输入: [1,17,5,10,13,15,10,5,16,8]
- 输出: 7
- 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
- 输入: [1,2,3,4,5,6,7,8,9]
- 输出: 2
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
保持区间波动,只需要把单调区间上的元素移除就可以了
class Solution {
public int wiggleMaxLength(int[] nums) {
if (nums.length <= 1) {
return nums.length;
}
//当前差值
int curDiff = 0;
//上一个差值
int preDiff = 0;
int count = 1;
for (int i = 1; i < nums.length; i++) {
//得到当前差值
curDiff = nums[i] - nums[i - 1];
//如果当前差值和上一个差值为一正一负
//等于0的情况表示初始时的preDiff
if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
count++;
preDiff = curDiff;
}
}
return count;
}
}
最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6
class Solution {//暴力算法
public int maxSubArray(int[] nums) {
int result=Integer.MIN_VALUE;
int count=0;
for(int i=0;i<nums.length;i++){
count=0;
for(int j=i;j<nums.length;j++){
count+=nums[j];
result=count>result?count:result;
}
}
return result;
}
}
如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优
遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。
这样相当于是用result记录最大子序和区间和(变相的算是调整了终止位置)。
如动画所示:
红色的起始位置就是贪心每次取count为正数的时候,开始一个区间的统计
class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 1){
return nums[0];
}
int sum = Integer.MIN_VALUE;
int count = 0;
for (int i = 0; i < nums.length; i++){
count += nums[i];
sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)
if (count <= 0){
count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
}
return sum;
}
}
买卖股票的最佳时机II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
- 输入: [7,1,5,3,6,4]
- 输出: 7
- 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
- 输入: [1,2,3,4,5]
- 输出: 4
- 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
- 输入: [7,6,4,3,1]
- 输出: 0
- 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 3 * 10 ^ 4
0 <= prices[i] <= 10 ^ 4
只有一只股票!
当前只有买股票或者卖股票的操作
想获得利润至少要两天为一个交易单元
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
那么根据prices可以得到每天的利润序列:(prices[i] - prices[i - 1])…..(prices[1] - prices[0])。
如图:
需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。
那么只收集正利润就是贪心所贪的地方!
局部最优:收集每天的正利润,全局最优:求得最大利润
// 贪心思路
class Solution {
public int maxProfit(int[] prices) {
int result = 0;
for (int i = 1; i < prices.length; i++) {
result += Math.max(prices[i] - prices[i - 1], 0);
}
return result;
}
}
跳跃游戏
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
- 输入: [2,3,1,1,4]
- 输出: true
- 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
- 输入: [3,2,1,0,4]
- 输出: false
- 解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置
这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点
i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。
而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。
如果cover大于等于了终点下标,直接return true就可以了
class Solution {
public boolean canJump(int[] nums) {
if (nums.length == 1) {
return true;
}
//覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
int coverRange = 0;
//在覆盖范围内更新最大的覆盖范围
for (int i = 0; i <= coverRange; i++) {
coverRange = Math.max(coverRange, i + nums[i]);
if (coverRange >= nums.length - 1) {
return true;
}
}
return false;
}
}
跳跃游戏II
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
- 输入: [2,3,1,1,4]
- 输出: 2
- 解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明: 假设你总是可以到达数组的最后一个位置
要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。
如图:
图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到
// 版本一
class Solution {
public int jump(int[] nums) {
if (nums == null || nums.length == 0 || nums.length == 1) {
return 0;
}
//记录跳跃的次数
int count=0;
//当前的覆盖最大区域
int curDistance = 0;
//最大的覆盖区域
int maxDistance = 0;
for (int i = 0; i < nums.length; i++) {
//在可覆盖区域内更新最大的覆盖区域
maxDistance = Math.max(maxDistance,i+nums[i]);
//说明当前一步,再跳一步就到达了末尾
if (maxDistance>=nums.length-1){
count++;
break;
}
//走到当前覆盖的最大区域时,更新下一步可达的最大区域
if (i==curDistance){
curDistance = maxDistance;
count++;
}
}
return count;
}
}
K次取反后最大化的数组和
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。
示例 1:
- 输入:A = [4,2,3], K = 1
- 输出:5
- 解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。
示例 2:
- 输入:A = [3,-1,0,2], K = 3
- 输出:6
- 解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。
示例 3:
- 输入:A = [2,-3,-1,5,-4], K = 2
- 输出:13
- 解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。
提示:
- 1 <= A.length <= 10000
- 1 <= K <= 10000
- -100 <= A[i] <= 100
class Solution {
public int largestSumAfterKNegations(int[] nums, int K) {
// 将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
nums = IntStream.of(nums)
.boxed()
.sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
.mapToInt(Integer::intValue).toArray();
int len = nums.length;
for (int i = 0; i < len; i++) {
//从前向后遍历,遇到负数将其变为正数,同时K--
if (nums[i] < 0 && K > 0) {
nums[i] = -nums[i];
K--;
}
}
// 如果K还大于0,那么反复转变数值最小的元素,将K用完
if (K % 2 == 1) nums[len - 1] = -nums[len - 1];
return Arrays.stream(nums).sum();
}
}
class Solution {
public int largestSumAfterKNegations(int[] A, int K) {
if (A.length == 1) return k % 2 == 0 ? A[0] : -A[0];
Arrays.sort(A);
int sum = 0;
int idx = 0;
for (int i = 0; i < K; i++) {
if (i < A.length - 1 && A[idx] < 0) {
A[idx] = -A[idx];
if (A[idx] >= Math.abs(A[idx + 1])) idx++;
continue;
}
A[idx] = -A[idx];
}
for (int i = 0; i < A.length; i++) {
sum += A[i];
}
return sum;
}
}
加油站
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1: 输入:
- gas = [1,2,3,4,5]
- cost = [3,4,5,1,2]
输出: 3 解释:
- 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
- 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
- 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
- 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
- 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
- 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
- 因此,3 可为起始索引。
示例 2: 输入:
- gas = [2,3,4]
- cost = [3,4,3]
- 输出: -1
- 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周
首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,起始位置从i+1算起,再从0计算curSum。
如图:
如果出现更大的负数,就是更新j,那么起始位置又变成新的j+1了。
而且j之前出现了多少负数,j后面就会出现多少正数,因为耗油总和是大于零的(前提我们已经确定了一定可以跑完全程)。
那么局部最优:当前累加rest[j]的和curSum一旦小于0,起始位置至少要是j+1,因为从j开始一定不行。全局最优:找到可以跑一圈的起始位置
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int cursum=0;
int totalsum=0;
int start=0;
for(int i=0;i<gas.length;i++){
cursum=gas[i]-cost[i];
totalsum+=gas[i]-cost[i];
if(cursum<0){
start=i+1;
cursum=0;
}
}
if(totalsum<0){return -1;}
return start;
}
}
分发糖果
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
- 输入: [1,0,2]
- 输出: 5
- 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
示例 2:
- 输入: [1,2,2]
- 输出: 4
- 解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件
例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
确定左孩子大于右孩子的情况一定要从后向前遍历!
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量即大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果
就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
/**
分两个阶段
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
*/
class Solution {
public int candy(int[] ratings) {
int len=ratings.length;
int[] arr=new int[len];
arr[0]=1;
for(int i=1;i<len;i++){
arr[i]=(ratings[i]>ratings[i-1])?arr[i-1]+1:1;
}
for(int i=len-2;i>=0;i--){
if(ratings[i]>ratings[i+1]){
arr[i]=Math.max(arr[i],arr[i+1]+1);
}
}
int result=0;
for(int num:arr){
result+=num;
}
return result;
}
}
柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
- 输入:[5,5,5,10,20]
- 输出:true
- 解释:
- 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
- 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
- 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
- 由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
- 输入:[5,5,10]
- 输出:true
示例 3:
- 输入:[10,10]
- 输出:false
示例 4:
- 输入:[5,5,10,10,20]
- 输出:false
- 解释:
- 前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
- 对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
- 对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
- 由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
- 0 <= bills.length <= 10000
- bills[i] 不是 5 就是 10 或是 20
有如下三种情况:
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零
class Solution {
public boolean lemonadeChange(int[] bills) {
int five = 0;
int ten = 0;
for (int i = 0; i < bills.length; i++) {
if (bills[i] == 5) {
five++;
} else if (bills[i] == 10) {
five--;
ten++;
} else if (bills[i] == 20) {
if (ten > 0) {
ten--;
five--;
} else {
five -= 3;
}
}
if (five < 0 || ten < 0) return false;
}
return true;
}
}
根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
- 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
- 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
- 解释:
- 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
- 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
- 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
- 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
- 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
- 输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
- 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
- 1 <= people.length <= 2000
- 0 <= hi <= 10^6
- 0 <= ki < people.length
题目数据确保队列可以被重建
可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了,为什么呢?
以图中{5,2} 为例:
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
- 插入[7,0]:[[7,0]]
- 插入[7,1]:[[7,0],[7,1]]
- 插入[6,1]:[[7,0],[6,1],[7,1]]
- 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
- 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
- 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
class Solution {
public int[][] reconstructQueue(int[][] people) {
Arrays.sort(people,(a,b)->{
if(a[0]==b[0]){
return a[1]-b[1];
}
return b[0]-a[0];
});
LinkedList<int[]> queue=new LinkedList();
for(int i=0;i<people.length;i++){
queue.add(people[i][1],people[i]);
}
// for (int[] p : people) {
// que.add(p[1],p);
// }
int[][] arr=queue.toArray(new int[people.length][]);
return arr;
}
}
用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
- 输入:points = [[10,16],[2,8],[1,6],[7,12]]
- 输出:2
- 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
- 输入:points = [[1,2],[3,4],[5,6],[7,8]]
- 输出:4
示例 3:
- 输入:points = [[1,2],[2,3],[3,4],[4,5]]
- 输出:2
示例 4:
- 输入:points = [[1,2]]
- 输出:1
示例 5:
- 输入:points = [[2,3],[2,3]]
- 输出:1
提示:
- 0 <= points.length <= 10^4
- points[i].length == 2
- -2^31 <= xstart < xend <= 2^31 - 1
为了让气球尽可能的重叠,需要对数组进行排序。
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了
满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,
所以代码中 if (points[i][0] > points[i - 1][1])
不能是>=
class Solution {
public int findMinArrowShots(int[][] points) {
if(points.length==1){
return 1;
}
Arrays.sort(points,(a,b)->{
return a[0]-b[0];
});
int count=1;
for(int i=1;i<points.length;i++){
if(points[i][0]>points[i-1][1]){
count++;
}else{
points[i][1]=Math.min(points[i-1][1],points[i][1]);
}
}
return count;
}
}
无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
- 输入: [ [1,2], [2,3], [3,4], [1,3] ]
- 输出: 1
- 解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
- 输入: [ [1,2], [1,2], [1,2] ]
- 输出: 2
- 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
- 输入: [ [1,2], [2,3] ]
- 输出: 0
- 解释: 你不需要移除任何区间,因为它们已经是无重叠的了
按照右边界排序,就要从左向右遍历,因为右边界越小越好,只要右边界越小,留给下一个区间的空间就越大,所以从左向右遍历,优先选右边界小的。
按照左边界排序,就要从右向左遍历,因为左边界数值越大越好(越靠右),这样就给前一个区间的空间就越大,所以可以从右向左遍历。
按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。
右边界排序之后,局部最优:优先选右边界小的区间,所以从左向右遍历,留给下一个区间的空间大一些,从而尽量避免交叉。全局最优:选取最多的非交叉区间
区间,1,2,3,4,5,6都按照右边界排好序。
每次取非交叉区间的时候,都是可右边界最小的来做分割点(这样留给下一个区间的空间就越大),所以第一条分割线就是区间1结束的位置
区间4结束之后,在找到区间6,所以一共记录非交叉区间的个数是三个。
总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3
class Solution {
public int eraseOverlapIntervals(int[][] intervals) {
if(intervals.length==1){
return 0;
}
Arrays.sort(intervals,(a,b)->{
return Integer.compare(a[1],b[1]);
});
int count=0;//记录无重叠区间数
int edg=Integer.MIN_VALUE;
for(int i=0;i<intervals.length;i++){
if(edg<=intervals[i][0]){// 若上一个区间的右边界小于当前区间的左边界,说明无交集
edg=intervals[i][1];
count++;
}
}
return intervals.length-count;
}
}
划分字母区间
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
示例:
- 输入:S = “ababcbacadefegdehijhklij”
- 输出:[9,7,8] 解释: 划分结果为 “ababcbaca”, “defegde”, “hijhklij”。 每个字母最多出现在一个片段中。 像 “ababcbacadefegde”, “hijhklij” 的划分是错误的,因为划分的片段数较少。
提示:
- S的长度在[1, 500]之间。
- S只包含小写字母 ‘a’ 到 ‘z’
一想到分割字符串就想到了回溯,但本题其实不用回溯去暴力搜索
在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
可以分为如下两步:
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
如图:
class Solution {
public List<Integer> partitionLabels(String S) {
List<Integer> list = new LinkedList<>();
int[] edge = new int[26];
char[] chars = S.toCharArray();
for (int i = 0; i < chars.length; i++) {
edge[chars[i] - 'a'] = i;
}
int idx = 0;
int last = -1;
for (int i = 0; i < chars.length; i++) {
idx = Math.max(idx,edge[chars[i] - 'a']);
if (i == idx) {
list.add(i - last);
last = i;
}
}
return list;
}
}
合并区间
给出一个区间的集合,请合并所有重叠的区间。
示例 1:
- 输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
- 输出: [[1,6],[8,10],[15,18]]
- 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
- 输入: intervals = [[1,4],[4,5]]
- 输出: [[1,5]]
- 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
- 注意:输入类型已于2019年4月15日更改。 请重置默认代码定义以获取新方法签名
按照左边界从小到大排序之后,如果 intervals[i][0] < intervals[i - 1][1]
即intervals[i]左边界 < intervals[i - 1]右边界,则一定有重复,因为intervals[i]的左边界一定是大于等于intervals[i - 1]的左边界。
即:intervals[i]的左边界在intervals[i - 1]左边界和右边界的范围内,那么一定有重复!
(注意图中区间都是按照左边界排序之后了)
class Solution {
public int[][] merge(int[][] intervals) {
LinkedList<int[]> res = new LinkedList<>();
Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));
res.add(intervals[0]);
for (int i = 1; i < intervals.length; i++) {
if (intervals[i][0] <= res.getLast()[1]) {
int start = res.getLast()[0];
int end = Math.max(intervals[i][1], res.getLast()[1]);
res.removeLast();
res.add(new int[]{start, end});
}
else {
res.add(intervals[i]);
}
}
return res.toArray(new int[res.size()][]);
}
}
单调递增的数字
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
- 输入: N = 10
- 输出: 9
示例 2:
- 输入: N = 1234
- 输出: 1234
示例 3:
- 输入: N = 332
- 输出: 299
说明: N 是在 [0, 10^9] 范围内的一个整数
局部最优:遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]–,然后strNum[i]给为9,可以保证这两位变成最大单调递增整数。
全局最优:得到小于等于N的最大单调递增的整数
举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
所以从前后向遍历会改变已经遍历过的结果!
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
class Solution {
public int monotoneIncreasingDigits(int n) {
String s = String.valueOf(n);
char[] chars = s.toCharArray();
int start = s.length();
for (int i = s.length() - 2; i >= 0; i--) {
if (chars[i] > chars[i + 1]) {
chars[i]--;
start = i+1;
}
}
for (int i = start; i < s.length(); i++) {
chars[i] = '9';
}
return Integer.parseInt(String.valueOf(chars));
}
}
买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1: 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2 输出: 8
解释: 能够达到的最大利润: 在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意:
- 0 < prices.length <= 50000.
- 0 < prices[i] < 50000.
- 0 <= fee < 50000
如果使用贪心策略,就是最低值买,最高值(如果算上手续费还盈利)就卖。
此时无非就是要找到两个点,买入日期,和卖出日期。
- 买入日期:其实很好想,遇到更低点就记录一下。
- 卖出日期:这个就不好算了,但也没有必要算出准确的卖出日期,只要当前价格大于(最低价格+手续费),就可以收获利润,至于准确的卖出日期,就是连续收获利润区间里的最后一天(并不需要计算是具体哪一天)。
所以我们在做收获利润操作的时候其实有三种情况:
- 情况一:收获利润的这一天并不是收获利润区间里的最后一天(不是真正的卖出,相当于持有股票),所以后面要继续收获利润。
- 情况二:前一天是收获利润区间里的最后一天(相当于真正的卖出了),今天要重新记录最小价格了。
- 情况三:不作操作,保持原有状态(买入,卖出,不买不卖)
// 贪心思路
class Solution {
public int maxProfit(int[] prices, int fee) {
int buy = prices[0] + fee;
int sum = 0;
for (int p : prices) {
if (p + fee < buy) {
buy = p + fee;
} else if (p > buy){
sum += p - buy;
buy = p;
}
}
return sum;
}
}
监控二叉树
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
- 输入:[0,0,null,0,0]
- 输出:1
- 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
- 输入:[0,0,null,0,null,0,null,null,0]
- 输出:2
- 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是 [1, 1000]。
- 每个节点的值都是 0
从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少
每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
0:该节点无覆盖
1:本节点有摄像头
2:本节点有覆盖
情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
class Solution {
int res=0;
public int minCameraCover(TreeNode root) {
// 对根节点的状态做检验,防止根节点是无覆盖状态 .
if(minCame(root)==0){
res++;
}
return res;
}
/**
节点的状态值:
0 表示无覆盖
1 表示 有摄像头
2 表示有覆盖
后序遍历,根据左右节点的情况,来判读 自己的状态
*/
public int minCame(TreeNode root){
if(root==null){
// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头
return 2;
}
int left=minCame(root.left);
int right=minCame(root.right);
// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
if(left==2&&right==2){
//(2,2)
return 0;
}else if(left==0||right==0){
// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
// (0,0) (0,1) (0,2) (1,0) (2,0)
// 状态值为 1 摄像头数 ++;
res++;
return 1;
}else{
// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
// 那么本节点就是处于被覆盖状态
return 2;
}
}
}