二叉树计算


二叉树的种类

在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

如图所示:

img

这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树

完全二叉树

什么是完全二叉树?

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点

img

优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系

二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如图:

img

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

那么链式存储方式就用指针, 顺序存储的方式就是用数组。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在散落在各个地址的节点串联一起。

链式存储如图:

img

数组来存储二叉树,顺序存储的方式如图:

img

用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2

二叉树的遍历方式

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。
  • 深度优先遍历
    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  • 广度优先遍历
    • 层次遍历(迭代法)

讲栈与队列的时候,就说过栈其实就是递归的一种是实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用非递归的方式来实现的。

而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树

二叉树的定义

public class TreeNode {
    int val;
      TreeNode left;
      TreeNode right;
      TreeNode() {}
      TreeNode(int val) { this.val = val; }
      TreeNode(int val, TreeNode left, TreeNode right) {
            this.val = val;
            this.left = left;
            this.right = right;
      }
}

二叉树的递归遍历

递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!

  1. 确定递归函数的参数和返回值
  2. 确定终止条件
  3. 确定单层递归的逻辑
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        ArrayList<Integer> res=new ArrayList<>();
        preorder(root,res);
        return res;
    }
    void preorder(TreeNode root,List<Integer> res){
        if(root==null){//前序遍历
            return;
        }
        res.add(root.val);
        pre(root.left,res);
        pre(root.right,res);
    }
     void postorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        postorder(root.left, list);
        postorder(root.right, list);
        list.add(root.val);             // 注意这一句
    }
     void inorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        inorder(root.left, list);
        list.add(root.val);             // 注意这一句
        inorder(root.right, list);
    }
}

二叉树的迭代遍历

递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

前序遍历(迭代法)

前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。

为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序

二叉树前序遍历(迭代法)

// 前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.right != null){
                stack.push(node.right);
            }
            if (node.left != null){
                stack.push(node.left);
            }
        }
        return result;
    }
}

中序遍历(迭代法)

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素

二叉树中序遍历(迭代法)

// 中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()){
           if (cur != null){
               stack.push(cur);
               cur = cur.left;
           }else{
               cur = stack.pop();
               result.add(cur.val);
               cur = cur.right;
           }
        }
        return result;
    }
}

后序遍历(迭代法)

前序到后序

// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.left != null){
                stack.push(node.left);
            }
            if (node.right != null){
                stack.push(node.right);
            }
        }
        Collections.reverse(result);
        return result;
    }
}

二叉树的统一迭代法

我们以中序遍历为例,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况

那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。

如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。

中序遍历迭代(统一写法)

将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集

class Solution {//迭代法前序遍历
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}

迭代法中序遍历代码如下:

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
    Stack<TreeNode> st = new Stack<>();
    if (root != null) st.push(root);
    while (!st.empty()) {
        TreeNode node = st.peek();
        if (node != null) {
            st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
            st.push(node);                          // 添加中节点
            st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。

            if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
        } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
            st.pop();           // 将空节点弹出
            node = st.peek();    // 重新取出栈中元素
            st.pop();
            result.add(node.val); // 加入到结果集
        }
    }
    return result;
}
}

迭代法后序遍历代码如下:

class Solution {
   public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)         
                               
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
   }
}

二叉树的层序遍历

力扣题目链接(opens new window)

给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。

102.二叉树的层序遍历

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。

使用队列实现二叉树广度优先遍历,动画如下:

102二叉树的层序遍历

// 102.二叉树的层序遍历
class Solution {
    public List<List<Integer>> resList = new ArrayList<List<Integer>>();

    public List<List<Integer>> levelOrder(TreeNode root) {
        //checkFun01(root,0);
        checkFun02(root);

        return resList;
    }
    //DFS--递归方式
    public void checkFun01(TreeNode node, Integer deep) {
        if (node == null) return;
        deep++;

        if (resList.size() < deep) {
            //当层级增加时,list的Item也增加,利用list的索引值进行层级界定
            List<Integer> item = new ArrayList<Integer>();
            resList.add(item);
        }
        resList.get(deep - 1).add(node.val);

        checkFun01(node.left, deep);
        checkFun01(node.right, deep);
    }
//BFS--迭代方式--借助队列
    public void checkFun02(TreeNode node) {
        if (node == null) return;
        Queue<TreeNode> que = new LinkedList<TreeNode>();
        que.offer(node);

        while (!que.isEmpty()) {
            List<Integer> itemList = new ArrayList<Integer>();
            int len = que.size();

            while (len > 0) {
                TreeNode tmpNode = que.poll();
                itemList.add(tmpNode.val);

                if (tmpNode.left != null) que.offer(tmpNode.left);
                if (tmpNode.right != null) que.offer(tmpNode.right);
                len--;
            }

            resList.add(itemList);
        }
    }
}

翻转二叉树

力扣题目链接(opens new window)

翻转一棵二叉树。

226.翻转二叉树

遍历的过程中去翻转每一个节点的左右孩子就可以达到整体翻转的效果。

注意只要把每一个节点的左右孩子翻转一下,就可以达到整体翻转的效果

这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便

翻转的过程:

翻转二叉树

我们来看一下递归三部曲:

  1. 确定递归函数的参数和返回值

参数就是要传入节点的指针,不需要其他参数了,通常此时定下来主要参数,如果在写递归的逻辑中发现还需要其他参数的时候,随时补充。

返回值的话其实也不需要,但是题目中给出的要返回root节点的指针,可以直接使用题目定义好的函数,所以就函数的返回类型为TreeNode*

  1. 确定终止条件

当前节点为空的时候,就返回

  1. 确定单层递归的逻辑

因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。

//DFS递归
class Solution {
   /**
     * 前后序遍历都可以
     * 中序不行,因为先左孩子交换孩子,再根交换孩子(做完后,右孩子已经变成了原来的左孩子),再右孩子交换孩子(此时其实是对原来的左孩子做交换)
     */
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null;
        }
        invertTree(root.left);
        invertTree(root.right);
        swapChildren(root);
        return root;
    }

    private void swapChildren(TreeNode root) {
        TreeNode tmp = root.left;
        root.left = root.right;
        root.right = tmp;
    }
}

//BFS 广度优先遍历 用队列,深度优先遍历用栈
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {return null;}
        ArrayDeque<TreeNode> deque = new ArrayDeque<>();
        deque.offer(root);
        while (!deque.isEmpty()) {
            int size = deque.size();
            while (size-- > 0) {
                TreeNode node = deque.poll();
                swap(node);
                if (node.left != null) {deque.offer(node.left);}
                if (node.right != null) {deque.offer(node.right);}
            }
        }
        return root;
    }

    public void swap(TreeNode root) {
        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;
    }
}

对称二叉树

力扣题目链接(opens new window)

给定一个二叉树,检查它是否是镜像对称的

101. 对称二叉树

对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。

101. 对称二叉树1

正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。

但都可以理解算是后序遍历,尽管已经不是严格上在一个树上进行遍历的后序遍历了。

通过队列来判断根节点的左子树和右子树的内侧和外侧是否相等,如动画所示:

101.对称二叉树

  /**
     * 递归法
     */
    public boolean isSymmetric1(TreeNode root) {
        return compare(root.left, root.right);
    }

    private boolean compare(TreeNode left, TreeNode right) {

        if (left == null && right != null) {
            return false;
        }
        if (left != null && right == null) {
            return false;
        }

        if (left == null && right == null) {
            return true;
        }
        if (left.val != right.val) {
            return false;
        }
        // 比较外侧
        boolean compareOutside = compare(left.left, right.right);
        // 比较内侧
        boolean compareInside = compare(left.right, right.left);
        return compareOutside && compareInside;
    }
    /**
     * 迭代法
     * 使用普通队列
     */
    public boolean isSymmetric3(TreeNode root) {
        Queue<TreeNode> deque = new LinkedList<>();
        deque.offer(root.left);
        deque.offer(root.right);
        while (!deque.isEmpty()) {
            TreeNode leftNode = deque.poll();
            TreeNode rightNode = deque.poll();
            if (leftNode == null && rightNode == null) {
                continue;
            }
//            if (leftNode == null && rightNode != null) {
//                return false;
//            }
//            if (leftNode != null && rightNode == null) {
//                return false;
//            }
//            if (leftNode.val != rightNode.val) {
//                return false;
//            }
            // 以上三个判断条件合并
            if (leftNode == null || rightNode == null || leftNode.val != rightNode.val) {
                return false;
            }
            // 这里顺序与使用Deque不同
            deque.offer(leftNode.left);
            deque.offer(rightNode.right);
            deque.offer(leftNode.right);
            deque.offer(rightNode.left);
        }
        return true;
    }

二叉树的最大深度

力扣题目链接(opens new window)

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例: 给定二叉树 [3,9,20,null,null,15,7],

104. 二叉树的最大深度

返回它的最大深度 3

可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度

使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数

class solution {
    /**
     * 递归法
     */
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        return Math.max(leftDepth, rightDepth) + 1;
    }
}
class solution {
    /**
     * 迭代法,使用层序遍历
     */
    public int maxDepth(TreeNode root) {
        if(root == null) {
            return 0;
        }
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode node = deque.poll();
                if (node.left != null) {
                    deque.offer(node.left);
                }
                if (node.right != null) {
                    deque.offer(node.right);
                }
            }
        }
        return depth;
    }
}

n叉树的最大深度

力扣题目链接(opens new window)

给定一个 n 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

例如,给定一个 3叉树 :

559.n叉树的最大深度

我们应返回其最大深度,3

class Solution {
    /*递归法,后序遍历求root节点的高度*/
    public int maxDepth(Node root) {
        if (root == null) return 0;

        int depth = 0;
        if (root.children != null){
            for (Node child : root.children){
                depth = Math.max(depth, maxDepth(child));
            }
        }

        return depth + 1; //中节点
    }  
}
class solution {
    /**
     * 迭代法,使用层序遍历
     */
    public int maxDepth(Node root) {
        if (root == null)   return 0;
        int depth = 0;
        Queue<Node> que = new LinkedList<>();
        que.offer(root);
        while (!que.isEmpty())
        {
            depth ++;
            int len = que.size();
            while (len > 0)
            {
                Node node = que.poll();
                for (int i = 0; i < node.children.size(); i++)
                    if (node.children.get(i) != null) 
                        que.offer(node.children.get(i));
                len--;
            }
        }
        return depth;
    }
}

二叉树的最小深度

力扣题目链接(opens new window)

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

111.二叉树的最小深度1

返回它的最小深度 2

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点

什么是叶子节点,左右孩子都为空的节点才是叶子节点

class Solution {
    /**
     * 递归法,相比求MaxDepth要复杂点
     * 因为最小深度是从根节点到最近**叶子节点**的最短路径上的节点数量
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = minDepth(root.left);
        int rightDepth = minDepth(root.right);
        if (root.left == null) {
            return rightDepth + 1;
        }
        if (root.right == null) {
            return leftDepth + 1;
        }
        // 左右结点都不为null
        return Math.min(leftDepth, rightDepth) + 1;
    }
}
class Solution {
   /**
     * 迭代法,层序遍历
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode poll = deque.poll();
                if (poll.left == null && poll.right == null) {
                    // 是叶子结点,直接返回depth,因为从上往下遍历,所以该值就是最小值
                    return depth;
                }
                if (poll.left != null) {
                    deque.offer(poll.left);
                }
                if (poll.right != null) {
                    deque.offer(poll.right);
                }
            }
        }
        return depth;
    }
}

完全二叉树的节点个数

力扣题目链接(opens new window)

给出一个完全二叉树,求出该树的节点个数。

示例 1:

  • 输入:root = [1,2,3,4,5,6]
  • 输出:6

示例 2:

  • 输入:root = []
  • 输出:0

示例 3:

  • 输入:root = [1]
  • 输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。

img

class Solution {
    // 通用递归解法
    public int countNodes(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}
class Solution {
    // 迭代法
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int result = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode cur = queue.poll();
                result++;
                if (cur.left != null) queue.offer(cur.left);
                if (cur.right != null) queue.offer(cur.right);
            }
        }
        return result;
    }
}

平衡二叉树

力扣题目链接(opens new window)

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

110.平衡二叉树

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

110.平衡二叉树1

返回 false

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:

110.平衡二叉树2

class Solution {
   /**
     * 递归法
     */
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) != -1;
    }

    private int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        if (leftHeight == -1) {
            return -1;
        }
        int rightHeight = getHeight(root.right);
        if (rightHeight == -1) {
            return -1;
        }
        // 左右子树高度差大于1,return -1表示已经不是平衡树了
        if (Math.abs(leftHeight - rightHeight) > 1) {
            return -1;
        }
        return Math.max(leftHeight, rightHeight) + 1;
    }
}
class Solution {
   /**
     * 优化迭代法,针对暴力迭代法的getHeight方法做优化,利用TreeNode.val来保存当前结点的高度,这样就不会有重复遍历
     * 获取高度算法时间复杂度可以降到O(1),总的时间复杂度降为O(n)。
     * 时间复杂度:O(n)
     */
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            TreeNode inNode = stack.peek();
            // 右结点为null或已经遍历过
            if (inNode.right == null || inNode.right == pre) {
                // 输出
                if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {
                    return false;
                }
                stack.pop();
                pre = inNode;
                root = null;// 当前结点下,没有要遍历的结点了
            } else {
                root = inNode.right;// 右结点还没遍历,遍历右结点
            }
        }
        return true;
    }

    /**
     * 求结点的高度
     */
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = root.left != null ? root.left.val : 0;
        int rightHeight = root.right != null ? root.right.val : 0;
        int height = Math.max(leftHeight, rightHeight) + 1;
        root.val = height;// 用TreeNode.val来保存当前结点的高度
        return height;
    }
}

二叉树的所有路径

力扣题目链接(opens new window)

给定一个二叉树,返回所有从根节点到叶子节点的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 257.二叉树的所有路径1

前序遍历以及回溯的过程如图:

257.二叉树的所有路径

回溯和递归是一一对应的,有一个递归,就要有一个回溯

//解法一
class Solution {
    /**
     * 递归法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        List<Integer> paths = new ArrayList<>();
        traversal(root, paths, res);
        return res;
    }

    private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
        paths.add(root.val);
        // 叶子结点
        if (root.left == null && root.right == null) {
            // 输出
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < paths.size() - 1; i++) {
                sb.append(paths.get(i)).append("->");
            }
            sb.append(paths.get(paths.size() - 1));
            res.add(sb.toString());
            return;
        }
        if (root.left != null) {
            traversal(root.left, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
        if (root.right != null) {
            traversal(root.right, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
    }
}
//方法二
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res=new ArrayList();
        // List<Integer> paths=new ArrayList();
        StringBuilder sb=new StringBuilder();
        if(root==null){
            return res;
        }
        digui(root,sb,res);
        return res;
    }
    void digui(TreeNode root,StringBuilder sb,List<String> res){
        sb.append(root.val+"").append("->");
        if(root.left==null && root.right==null){
            // StringBuilder sb=new StringBuilder();
            // for(int i=0 ;i<paths.size()-1;i++){
            //     sb.append(paths.get(i)).append("->");
            // }
            // sb.append(paths.get(paths.size()-1));
            sb.deleteCharAt(sb.length()-1);
            sb.deleteCharAt(sb.length()-1);
            res.add(sb.toString());
        }
        if(root.left!=null){
            digui(root.left,sb,res);
            // paths.remove(paths.size()-1);
            sb.deleteCharAt(sb.length()-1);
            sb.deleteCharAt(sb.length()-1);
        }
        if(root.right!=null){
            digui(root.right,sb,res);
            // paths.remove(paths.size()-1);
            sb.deleteCharAt(sb.length()-1);
            sb.deleteCharAt(sb.length()-1);      
        }
        }
}
class Solution {
    /**
     * 迭代法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        if (root == null)
            return result;
        Stack<Object> stack = new Stack<>();
        // 节点和路径同时入栈
        stack.push(root);
        stack.push(root.val + "");
        while (!stack.isEmpty()) {
            // 节点和路径同时出栈
            String path = (String) stack.pop();
            TreeNode node = (TreeNode) stack.pop();
            // 若找到叶子节点
            if (node.left == null && node.right == null) {
                result.add(path);
            }
            //右子节点不为空
            if (node.right != null) {
                stack.push(node.right);
                stack.push(path + "->" + node.right.val);
            }
            //左子节点不为空
            if (node.left != null) {
                stack.push(node.left);
                stack.push(path + "->" + node.left.val);
            }
        }
        return result;
    }
}

注意这里最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点。

求二叉树的最小深度和求二叉树的最大深度的差别主要在于处理左右孩子不为空的逻辑。

左叶子之和

力扣题目链接(opens new window)

计算给定二叉树的所有左叶子之和。

示例:

404.左叶子之和1

那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。

此时就要通过节点的父节点来判断其左孩子是不是左叶子了。

平时我们解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题我们要通过节点的父节点判断本节点的属性。

递归

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        int leftValue = sumOfLeftLeaves(root.left);    // 左
        int rightValue = sumOfLeftLeaves(root.right);  // 右
                                                       
        int midValue = 0;
        if (root.left != null && root.left.left == null && root.left.right == null) { 
            midValue = root.left.val;
        }
        int sum = midValue + leftValue + rightValue;  // 中
        return sum;
    }
}

迭代

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        Stack<TreeNode> stack = new Stack<> ();
        stack.add(root);
        int result = 0;
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            if (node.left != null && node.left.left == null && node.left.right == null) {
                result += node.left.val;
            }
            if (node.right != null) stack.add(node.right);
            if (node.left != null) stack.add(node.left);
        }
        return result;
    }
}
// 层序遍历迭代法
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        int sum = 0;
        if (root == null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode node = queue.poll();
                if (node.left != null) { // 左节点不为空
                    queue.offer(node.left);
                    if (node.left.left == null && node.left.right == null){ // 左叶子节点
                        sum += node.left.val;
                    }
                }
                if (node.right != null) queue.offer(node.right);
            }
        }
        return sum;
    }
}

找树左下角的值

力扣题目链接(opens new window)

给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:

513.找树左下角的值

示例 2:

513.找树左下角的值1

// 递归法
class Solution {
    private int Deep = -1;
    private int value = 0;
    public int findBottomLeftValue(TreeNode root) {
        value = root.val;
        findLeftValue(root,0);
        return value;
    }

    private void findLeftValue (TreeNode root,int deep) {
        if (root == null) return;
        if (root.left == null && root.right == null) {
            if (deep > Deep) {
                value = root.val;
                Deep = deep;
            }
        }
        if (root.left != null) findLeftValue(root.left,deep + 1);
        if (root.right != null) findLeftValue(root.right,deep + 1);
    }
}
//迭代法
class Solution {

    public int findBottomLeftValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int res = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode poll = queue.poll();
                if (i == 0) {
                    res = poll.val;
                }
                if (poll.left != null) {
                    queue.offer(poll.left);
                }
                if (poll.right != null) {
                    queue.offer(poll.right);
                }
            }
        }
        return res;
    }
}

路径总和

力扣题目链接(opens new window)

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

112.路径总和1

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示

class solution {//递归
    public boolean haspathsum(treenode root, int targetsum) {
        
        if (root == null) return false; // 为空退出
        
        // 叶子节点判断是否符合
        if (root.left == null && root.right == null) return root.val == targetsum;

        // 求两侧分支的路径和
        return haspathsum(root.left, targetsum - root.val) || haspathsum(root.right, targetsum - root.val);
    }
}
class Solution {//迭代
    public boolean hasPathSum(TreeNode root, int targetSum) {
        if(root==null){
            return false;
        }
        Stack<Object> st=new Stack();
    st.push(root);
    st.push(root.val);
    while(!st.isEmpty()){
        int size=st.size();
        for(int i=0;i<size;i++){
            int nodeval=(int)st.pop();
            TreeNode node=(TreeNode)st.pop();
            if(node.left==null && node.right==null && nodeval==targetSum){
                return true;
            }
            if(node.left!=null){
                st.push(node.left);
                st.push(nodeval+node.left.val);
            }
            if(node.right!=null){
                st.push(node.right);
                st.push(nodeval+node.right.val);
            }
        }
    }
    return false;

    }
}

路径总和ii

力扣题目链接(opens new window)

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

113.路径总和ii1.png

路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!

如图:

113.路径总和ii

class solution {
    public List<List<Integer>> pathsum(TreeNode root, int targetsum) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) return res; // 非空判断

        List<Integer> path = new LinkedList<>();
        preorderdfs(root, targetsum, res, path);
        return res;
    }

    public void preorderdfs(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
        path.add(root.val);
        // 遇到了叶子节点
        if (root.left == null && root.right == null) {
            // 找到了和为 targetsum 的路径
            if (targetsum - root.val == 0) {
                res.add(new ArrayList<>(path));
            }
            return; // 如果和不为 targetsum,返回
        }

        if (root.left != null) {
            preorderdfs(root.left, targetsum - root.val, res, path);
            path.remove(path.size() - 1); // 回溯
        }
        if (root.right != null) {
            preorderdfs(root.right, targetsum - root.val, res, path);
            path.remove(path.size() - 1); // 回溯
        }
    }
}

从中序与后序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来在切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

流程如图:

106.从中序与后序遍历序列构造二叉树

第一步:如果数组大小为零的话,说明是空节点了。

第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

第五步:切割后序数组,切成后序左数组和后序右数组

第六步:递归处理左区间和右区间

中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组

class Solution {
    Map<Integer, Integer> map;  // 方便根据数值查找位置
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(inorder,  0, inorder.length, postorder,0, postorder.length);  // 前闭后开
    }
    
    public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) {
        // 参数里的范围都是前闭后开
        if (inBegin >= inEnd || postBegin >= postEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(postorder[postEnd - 1]);  // 找到后序遍历的最后一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定后序数列的个数
        root.left = findNode(inorder, inBegin, rootIndex,
                            postorder, postBegin, postBegin + lenOfLeft);
        root.right = findNode(inorder, rootIndex + 1, inEnd,
                            postorder, postBegin + lenOfLeft, postEnd - 1);

        return root;
    }
}

从前序与中序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

105. 从前序与中序遍历序列构造二叉树

class Solution {
    Map<Integer, Integer> map;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(preorder, 0, preorder.length, inorder,  0, inorder.length);  // 前闭后开
    }

    public TreeNode findNode(int[] preorder, int preBegin, int preEnd, int[] inorder, int inBegin, int inEnd) {
        // 参数里的范围都是前闭后开
        if (preBegin >= preEnd || inBegin >= inEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(preorder[preBegin]);  // 找到前序遍历的第一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定前序数列的个数
        root.left = findNode(preorder, preBegin + 1, preBegin + lenOfLeft + 1,  
                            inorder, inBegin, rootIndex);
        root.right = findNode(preorder, preBegin + lenOfLeft + 1, preEnd,
                            inorder, rootIndex + 1, inEnd);

        return root;
    }
}

最大二叉树

力扣题目地址(opens new window)

给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:

  • 二叉树的根是数组中的最大元素。
  • 左子树是通过数组中最大值左边部分构造出的最大二叉树。
  • 右子树是通过数组中最大值右边部分构造出的最大二叉树。

通过给定的数组构建最大二叉树,并且输出这个树的根节点。

示例 :

654.最大二叉树

提示:

给定的数组的大小在 [1, 1000] 之间

最大二叉树的构建过程如下:

654.最大二叉树

构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return constructMaximumBinaryTree1(nums, 0, nums.length);
    }

    public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
        if (rightIndex - leftIndex < 1) {// 没有元素了
            return null;
        }
        if (rightIndex - leftIndex == 1) {// 只有一个元素
            return new TreeNode(nums[leftIndex]);
        }
        int maxIndex = leftIndex;// 最大值所在位置
        int maxVal = nums[maxIndex];// 最大值
        for (int i = leftIndex + 1; i < rightIndex; i++) {
            if (nums[i] > maxVal){
                maxVal = nums[i];
                maxIndex = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        // 根据maxIndex划分左右子树
        root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
        root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
        return root;
    }
}

注意类似用数组构造二叉树的题目,每次分隔尽量不要定义新的数组,而是通过下标索引直接在原数组上操作,这样可以节约时间和空间上的开销。

一般情况来说:如果让空节点(空指针)进入递归,就不加if,如果不让空节点进入递归,就加if限制一下, 终止条件也会相应的调整

合并二叉树

力扣题目链接(opens new window)

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

示例 1:

617.合并二叉树

注意: 合并必须从两个树的根节点开始

class Solution {
    // 递归
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;

        root1.val += root2.val;
        root1.left = mergeTrees(root1.left,root2.left);
        root1.right = mergeTrees(root1.right,root2.right);
        return root1;
    }
}
class Solution {
    // 使用栈迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) {
            return root2;
        }
        if (root2 == null) {
            return root1;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root2);
        stack.push(root1);
        while (!stack.isEmpty()) {
            TreeNode node1 = stack.pop();
            TreeNode node2 = stack.pop();
            node1.val += node2.val;
            if (node2.right != null && node1.right != null) {
                stack.push(node2.right);
                stack.push(node1.right);
            } else {
                if (node1.right == null) {
                    node1.right = node2.right;
                }
            }
            if (node2.left != null && node1.left != null) {
                stack.push(node2.left);
                stack.push(node1.left);
            } else {
                if (node1.left == null) {
                    node1.left = node2.left;
                }
            }
        }
        return root1;
    }
}
class Solution {
    // 使用队列迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 ==null) return root1;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root1);
        queue.offer(root2);
        while (!queue.isEmpty()) {
            TreeNode node1 = queue.poll();
            TreeNode node2 = queue.poll();
            // 此时两个节点一定不为空,val相加
            node1.val = node1.val + node2.val;
            // 如果两棵树左节点都不为空,加入队列
            if (node1.left != null && node2.left != null) {
                queue.offer(node1.left);
                queue.offer(node2.left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1.right != null && node2.right != null) {
                queue.offer(node1.right);
                queue.offer(node2.right);
            }
            // 若node1的左节点为空,直接赋值
            if (node1.left == null && node2.left != null) {
                node1.left = node2.left;
            }
            // 若node2的左节点为空,直接赋值
            if (node1.right == null && node2.right != null) {
                node1.right = node2.right;
            }
        }
        return root1;
    }
}

二叉搜索树中的搜索

力扣题目地址(opens new window)

给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

例如,

700.二叉搜索树中的搜索

在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

class Solution {
    // 递归,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        TreeNode left = searchBST(root.left, val);
        if (left != null) {
            return left;
        }
        return searchBST(root.right, val);
    }
}

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}

class Solution {
    // 迭代,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode pop = stack.pop();
            if (pop.val == val) {
                return pop;
            }
            if (pop.right != null) {
                stack.push(pop.right);
            }
            if (pop.left != null) {
                stack.push(pop.left);
            }
        }
        return null;
    }
}

class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return null;
    }
}

验证二叉搜索树

力扣题目链接(opens new window)

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

98.验证二叉搜索树

中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了


class Solution {
    // 递归
    TreeNode max;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 左
        boolean left = isValidBST(root.left);
        if (!left) {
            return false;
        }
        // 中
        if (max != null && root.val <= max.val) {
            return false;
        }
        max = root;
        // 右
        boolean right = isValidBST(root.right);
        return right;
    }
}
// 简洁实现·中序遍历
class Solution {
    private long prev = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (!isValidBST(root.left)) {
            return false;
        }
        if (root.val <= prev) { // 不满足二叉搜索树条件
            return false;
        }
        prev = root.val;
        return isValidBST(root.right);
    }
}

二叉搜索树的最小绝对差

力扣题目链接(opens new window)

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

示例:

530二叉搜索树的最小绝对差

提示:树中至少有 2 个节点

遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了

在二叉搜素树中序遍历的过程中,我们就可以直接计算了。

需要用一个pre节点记录一下cur节点的前一个节点。

如图:

530.二叉搜索树的最小绝对差

//递归
class Solution {
    TreeNode pre;// 记录上一个遍历的结点
    int result = Integer.MAX_VALUE;
    public int getMinimumDifference(TreeNode root) {
       if(root==null)return 0;
       traversal(root);
       return result;
    }
    public void traversal(TreeNode root){
        if(root==null)return;
        //左
        traversal(root.left);
        //中
        if(pre!=null){
            result = Math.min(result,root.val-pre.val);
        }
        pre = root;
        //右
        traversal(root.right);
    }
}
//迭代法-中序遍历
class Solution {
    TreeNode pre;
    Stack<TreeNode> stack;
    public int getMinimumDifference(TreeNode root) {
        if (root == null) return 0;
        stack = new Stack<>();
        TreeNode cur = root;
        int result = Integer.MAX_VALUE;
        while (cur != null || !stack.isEmpty()) {
            if (cur != null) {
                stack.push(cur); // 将访问的节点放进栈
                cur = cur.left; // 左
            }else {
                cur = stack.pop(); 
                if (pre != null) { // 中
                    result = Math.min(result, cur.val - pre.val);
                }
                pre = cur;
                cur = cur.right; // 右
            }
        }
        return result;
    }
}

二叉树的最近公共祖先

力扣题目链接(opens new window)

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

236. 二叉树的最近公共祖先

示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉树中

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之

236.二叉树的最近公共祖先1

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) { // 递归结束条件
            return root;
        }

        // 后序遍历
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);

        if(left == null && right == null) { // 若未找到节点 p 或 q
            return null;
        }else if(left == null && right != null) { // 若找到一个节点
            return right;
        }else if(left != null && right == null) { // 若找到一个节点
            return left;
        }else { // 若找到两个节点
            return root;
        }
    }
}

二叉搜索树的最近公共祖先

力扣题目链接(opens new window)

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

235. 二叉搜索树的最近公共祖先

示例 1:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
  • 输出: 6
  • 解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
  • 输出: 2
  • 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中

递归法:

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
        if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
        return root;
    }
}

二叉搜索树中的插入操作

力扣题目链接(opens new window)

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。

701.二叉搜索树中的插入操作

提示:

  • 给定的树上的节点数介于 0 和 10^4 之间
  • 每个节点都有一个唯一整数值,取值范围从 0 到 10^8
  • -10^8 <= val <= 10^8
  • 新值和原始二叉搜索树中的任意节点值都不同

递归法

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if (root == null) // 如果当前节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。
            return new TreeNode(val);
            
        if (root.val < val){
            root.right = insertIntoBST(root.right, val); // 递归创建右子树
        }else if (root.val > val){
            root.left = insertIntoBST(root.left, val); // 递归创建左子树
        }
        return root;
    }
}

删除二叉搜索树中的节点

力扣题目链接(opens new window)

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 $O(h)$,h 为树的高度。

示例:

450.删除二叉搜索树中的节点

五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了
  • 找到删除的节点
    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

第五种情况有点难以理解,看下面动画:

450.删除二叉搜索树中的节点

动画中棵二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。

将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。

要删除的节点(元素7)的右孩子(元素9)为新的根节点。

class Solution {
  public TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return root;
    if (root.val == key) {
      if (root.left == null) {
        return root.right;
      } else if (root.right == null) {
        return root.left;
      } else {
        TreeNode cur = root.right;
        while (cur.left != null) {
          cur = cur.left;
        }
        cur.left = root.left;
        root = root.right;
        return root;
      }
    }
    if (root.val > key) root.left = deleteNode(root.left, key);
    if (root.val < key) root.right = deleteNode(root.right, key);
    return root;
  }
}

修剪二叉搜索树

力扣题目链接(opens new window)

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

669.修剪二叉搜索树

669.修剪二叉搜索树1

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if (root == null) {
            return null;
        }
        if (root.val < low) {
            return trimBST(root.right, low, high);
        }
        if (root.val > high) {
            return trimBST(root.left, low, high);
        }
        // root在[low,high]范围内
        root.left = trimBST(root.left, low, high);
        root.right = trimBST(root.right, low, high);
        return root;
    }
}

将有序数组转换为二叉搜索树

力扣题目链接(opens new window)

将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

108.将有序数组转换为二叉搜索树

本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间

分割点就是数组中间位置的节点。

递归: 左闭右开 [left,right)

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return sortedArrayToBST(nums, 0, nums.length);
    }
    
    public TreeNode sortedArrayToBST(int[] nums, int left, int right) {
        if (left >= right) {
            return null;
        }
        if (right - left == 1) {
            return new TreeNode(nums[left]);
        }
        int mid = left + (right - left) / 2;
        TreeNode root = new TreeNode(nums[mid]);
        root.left = sortedArrayToBST(nums, left, mid);
        root.right = sortedArrayToBST(nums, mid + 1, right);
        return root;
    }
}

把二叉搜索树转换为累加树

力扣题目链接(opens new window)

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

  • 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
  • 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

  • 输入:root = [0,null,1]
  • 输出:[1,null,1]

示例 3:

  • 输入:root = [1,0,2]
  • 输出:[3,3,2]

示例 4:

  • 输入:root = [3,2,4,1]
  • 输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同 。
  • 给定的树为二叉搜索树

从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

538.把二叉搜索树转换为累加树

class Solution {
    int sum;
    public TreeNode convertBST(TreeNode root) {
        sum = 0;
        convertBST1(root);
        return root;
    }

    // 按右中左顺序遍历,累加即可
    public void convertBST1(TreeNode root) {
        if (root == null) {
            return;
        }
        convertBST1(root.right);
        sum += root.val;
        root.val = sum;
        convertBST1(root.left);
    }
}

文章作者: 读序
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 读序 !
  目录